Electronic structure of epitaxial single-layer MoS2

The electronic structure of epitaxial single-layer MoS2 on Au(111) is investigated by angle-resolved photoemission spectroscopy. Pristine and potassium-doped layers are studied in order to gain access to the conduction band. The potassium-doped layer is found to have a (1.39±0.05)  eV direct band ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-01, Vol.114 (4), p.046802-046802
Hauptverfasser: Miwa, Jill A, Ulstrup, Søren, Sørensen, Signe G, Dendzik, Maciej, Čabo, Antonija Grubišić, Bianchi, Marco, Lauritsen, Jeppe Vang, Hofmann, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic structure of epitaxial single-layer MoS2 on Au(111) is investigated by angle-resolved photoemission spectroscopy. Pristine and potassium-doped layers are studied in order to gain access to the conduction band. The potassium-doped layer is found to have a (1.39±0.05)  eV direct band gap at K[over ¯] with the valence band top at Γ[over ¯] having a significantly higher binding energy than at K[over ¯]. The moiré superstructure of the epitaxial system does not lead to the presence of observable replica bands or minigaps. The degeneracy of the upper valence band at K[over ¯] is found to be lifted by the spin-orbit interaction, leading to a splitting of (145±4)  meV. This splitting is anisotropic and in excellent agreement with recent calculations. Finally, it is shown that the potassium doping does not only give rise to a rigid shift of the band structure but also to a distortion, leading to the possibility of band structure engineering in single-layers of transition metal dichalcogenides.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.114.046802