Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors
An inkjet-printed graphene film is of great importance for next-generation flexible, low cost and high performance electronic devices. However, due to the limitation of the inkjet printing process, the electrical conductivity of inkjet-printed graphene films is limited to N10 S'cm-1, and achieving a...
Gespeichert in:
Veröffentlicht in: | Nano research 2013-10, Vol.6 (11), p.842-852 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An inkjet-printed graphene film is of great importance for next-generation flexible, low cost and high performance electronic devices. However, due to the limitation of the inkjet printing process, the electrical conductivity of inkjet-printed graphene films is limited to N10 S'cm-1, and achieving a high conductivity of the printed graphene films remains a big challenge. Here, we develop a "weak oxidation- vigorous exfoliation" strategy to tailor graphene oxide (GO) for meeting all the requirements of highly conductive inkjet-printed graphene films, including a more intact carbon plane and suitable size. The -conjugated structure of the resulting graphene has been restored to a high degree, and its printed films show an ultrahigh conductivity of -420 S-cm-I, which is tens of times higher than previously reported results, suggesting that, aside from developing a highly efficient reduction method, tuning the GO structure could be an alternative way to produce high quality graphene sheets. Using inkjet-printed graphene patterns as source/drain/gate electrodes, and semiconducting single-walled carbon nanotubes (SWCNTs) as channels, we fabricated an all-carbon field effect transistor which shows excellent performance (an on/off ratio of -104 and a mobility of -8 cm2"V-l's-1) compared to previously reported CNT-based transistors, promising the use of nanocarbon materials, graphene and SWCNTs in printed electronics, especially where high performance and flexibility are needed. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-013-0362-2 |