Diamond encapsulated photovoltaics for transdermal power delivery

A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transpar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-03, Vol.77, p.589-597
Hauptverfasser: Ahnood, A., Fox, K.E., Apollo, N.V., Lohrmann, A., Garrett, D.J., Nayagam, D.A.X., Karle, T., Stacey, A., Abberton, K.M., Morrison, W.A., Blakers, A., Prawer, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue
container_start_page 589
container_title Biosensors & bioelectronics
container_volume 77
creator Ahnood, A.
Fox, K.E.
Apollo, N.V.
Lohrmann, A.
Garrett, D.J.
Nayagam, D.A.X.
Karle, T.
Stacey, A.
Abberton, K.M.
Morrison, W.A.
Blakers, A.
Prawer, S.
description A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7W/cm2, a peak output power of 2.7mW is delivered to the implant with an active PV cell dimension of 1.5×1.5×0.06mm3. This corresponds to a volumetric power output density of ∼20mW/mm3, significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants •Photovoltaic power delivery system for bioelectronics implants.•Superior volumetric power output density of ∼20mW/mm3.•Diamond encapsulation and packaging for long term implant stability.
doi_str_mv 10.1016/j.bios.2015.10.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786194404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566315304863</els_id><sourcerecordid>1746871089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c95cef53ef56f38e02b52770aa10f6b037a2af0cd1f4c2902f2ed3b62eb05e0d3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78AQ_So5euk8-24EX8BsGLnkOaTDBLu6lJd8V_b5dVj-JhGBie9z3MQ8gphTkFqi4W8zbEPGdA5XSYA2M7ZEbripeCcblLZtBIVUql-AE5zHkBABVtYJ8cMCUqJZtmRq5ugunj0hW4tGbIq86M6IrhLY5xHbvRBJsLH1MxJrPMDlNvumKIH5gKh11YY_o8JnvedBlPvvcReb27fbl-KJ-e7x-vr55KKxgbS9tIi17yaZTnNQJrJasqMIaCVy3wyjDjwTrqhWUNMM_Q8VYxbEEiOH5Ezre9Q4rvK8yj7kO22HVmiXGVNa1qRRshQPwHlUxwLug_UKHqikLdTCjbojbFnBN6PaTQm_SpKeiNEL3QGyF6I2Rzm4RMobPv_lXbo_uN_BiYgMstgNPv1gGTzjZMMtCFhHbULoa_-r8A4WicUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746871089</pqid></control><display><type>article</type><title>Diamond encapsulated photovoltaics for transdermal power delivery</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ahnood, A. ; Fox, K.E. ; Apollo, N.V. ; Lohrmann, A. ; Garrett, D.J. ; Nayagam, D.A.X. ; Karle, T. ; Stacey, A. ; Abberton, K.M. ; Morrison, W.A. ; Blakers, A. ; Prawer, S.</creator><creatorcontrib>Ahnood, A. ; Fox, K.E. ; Apollo, N.V. ; Lohrmann, A. ; Garrett, D.J. ; Nayagam, D.A.X. ; Karle, T. ; Stacey, A. ; Abberton, K.M. ; Morrison, W.A. ; Blakers, A. ; Prawer, S.</creatorcontrib><description>A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7W/cm2, a peak output power of 2.7mW is delivered to the implant with an active PV cell dimension of 1.5×1.5×0.06mm3. This corresponds to a volumetric power output density of ∼20mW/mm3, significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants •Photovoltaic power delivery system for bioelectronics implants.•Superior volumetric power output density of ∼20mW/mm3.•Diamond encapsulation and packaging for long term implant stability.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2015.10.022</identifier><identifier>PMID: 26476599</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biocompatibility ; Coated Materials, Biocompatible - chemical synthesis ; Density ; Diamond - chemistry ; Diamonds ; Electric Power Supplies ; Energy harvesting ; Energy Transfer ; Equipment Design ; Equipment Failure Analysis ; Illumination ; Materials Testing ; Photovoltaic cells ; Photovoltaics ; Prostheses and Implants ; Solar cells ; Solar Energy ; Surgical implants ; Transdermal power delivery ; Wavelengths</subject><ispartof>Biosensors &amp; bioelectronics, 2016-03, Vol.77, p.589-597</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c95cef53ef56f38e02b52770aa10f6b037a2af0cd1f4c2902f2ed3b62eb05e0d3</citedby><cites>FETCH-LOGICAL-c422t-c95cef53ef56f38e02b52770aa10f6b037a2af0cd1f4c2902f2ed3b62eb05e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566315304863$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26476599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahnood, A.</creatorcontrib><creatorcontrib>Fox, K.E.</creatorcontrib><creatorcontrib>Apollo, N.V.</creatorcontrib><creatorcontrib>Lohrmann, A.</creatorcontrib><creatorcontrib>Garrett, D.J.</creatorcontrib><creatorcontrib>Nayagam, D.A.X.</creatorcontrib><creatorcontrib>Karle, T.</creatorcontrib><creatorcontrib>Stacey, A.</creatorcontrib><creatorcontrib>Abberton, K.M.</creatorcontrib><creatorcontrib>Morrison, W.A.</creatorcontrib><creatorcontrib>Blakers, A.</creatorcontrib><creatorcontrib>Prawer, S.</creatorcontrib><title>Diamond encapsulated photovoltaics for transdermal power delivery</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7W/cm2, a peak output power of 2.7mW is delivered to the implant with an active PV cell dimension of 1.5×1.5×0.06mm3. This corresponds to a volumetric power output density of ∼20mW/mm3, significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants •Photovoltaic power delivery system for bioelectronics implants.•Superior volumetric power output density of ∼20mW/mm3.•Diamond encapsulation and packaging for long term implant stability.</description><subject>Biocompatibility</subject><subject>Coated Materials, Biocompatible - chemical synthesis</subject><subject>Density</subject><subject>Diamond - chemistry</subject><subject>Diamonds</subject><subject>Electric Power Supplies</subject><subject>Energy harvesting</subject><subject>Energy Transfer</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Illumination</subject><subject>Materials Testing</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Prostheses and Implants</subject><subject>Solar cells</subject><subject>Solar Energy</subject><subject>Surgical implants</subject><subject>Transdermal power delivery</subject><subject>Wavelengths</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMoun78AQ_So5euk8-24EX8BsGLnkOaTDBLu6lJd8V_b5dVj-JhGBie9z3MQ8gphTkFqi4W8zbEPGdA5XSYA2M7ZEbripeCcblLZtBIVUql-AE5zHkBABVtYJ8cMCUqJZtmRq5ugunj0hW4tGbIq86M6IrhLY5xHbvRBJsLH1MxJrPMDlNvumKIH5gKh11YY_o8JnvedBlPvvcReb27fbl-KJ-e7x-vr55KKxgbS9tIi17yaZTnNQJrJasqMIaCVy3wyjDjwTrqhWUNMM_Q8VYxbEEiOH5Ezre9Q4rvK8yj7kO22HVmiXGVNa1qRRshQPwHlUxwLug_UKHqikLdTCjbojbFnBN6PaTQm_SpKeiNEL3QGyF6I2Rzm4RMobPv_lXbo_uN_BiYgMstgNPv1gGTzjZMMtCFhHbULoa_-r8A4WicUw</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Ahnood, A.</creator><creator>Fox, K.E.</creator><creator>Apollo, N.V.</creator><creator>Lohrmann, A.</creator><creator>Garrett, D.J.</creator><creator>Nayagam, D.A.X.</creator><creator>Karle, T.</creator><creator>Stacey, A.</creator><creator>Abberton, K.M.</creator><creator>Morrison, W.A.</creator><creator>Blakers, A.</creator><creator>Prawer, S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160315</creationdate><title>Diamond encapsulated photovoltaics for transdermal power delivery</title><author>Ahnood, A. ; Fox, K.E. ; Apollo, N.V. ; Lohrmann, A. ; Garrett, D.J. ; Nayagam, D.A.X. ; Karle, T. ; Stacey, A. ; Abberton, K.M. ; Morrison, W.A. ; Blakers, A. ; Prawer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c95cef53ef56f38e02b52770aa10f6b037a2af0cd1f4c2902f2ed3b62eb05e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocompatibility</topic><topic>Coated Materials, Biocompatible - chemical synthesis</topic><topic>Density</topic><topic>Diamond - chemistry</topic><topic>Diamonds</topic><topic>Electric Power Supplies</topic><topic>Energy harvesting</topic><topic>Energy Transfer</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Illumination</topic><topic>Materials Testing</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Prostheses and Implants</topic><topic>Solar cells</topic><topic>Solar Energy</topic><topic>Surgical implants</topic><topic>Transdermal power delivery</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahnood, A.</creatorcontrib><creatorcontrib>Fox, K.E.</creatorcontrib><creatorcontrib>Apollo, N.V.</creatorcontrib><creatorcontrib>Lohrmann, A.</creatorcontrib><creatorcontrib>Garrett, D.J.</creatorcontrib><creatorcontrib>Nayagam, D.A.X.</creatorcontrib><creatorcontrib>Karle, T.</creatorcontrib><creatorcontrib>Stacey, A.</creatorcontrib><creatorcontrib>Abberton, K.M.</creatorcontrib><creatorcontrib>Morrison, W.A.</creatorcontrib><creatorcontrib>Blakers, A.</creatorcontrib><creatorcontrib>Prawer, S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahnood, A.</au><au>Fox, K.E.</au><au>Apollo, N.V.</au><au>Lohrmann, A.</au><au>Garrett, D.J.</au><au>Nayagam, D.A.X.</au><au>Karle, T.</au><au>Stacey, A.</au><au>Abberton, K.M.</au><au>Morrison, W.A.</au><au>Blakers, A.</au><au>Prawer, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond encapsulated photovoltaics for transdermal power delivery</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>77</volume><spage>589</spage><epage>597</epage><pages>589-597</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7W/cm2, a peak output power of 2.7mW is delivered to the implant with an active PV cell dimension of 1.5×1.5×0.06mm3. This corresponds to a volumetric power output density of ∼20mW/mm3, significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants •Photovoltaic power delivery system for bioelectronics implants.•Superior volumetric power output density of ∼20mW/mm3.•Diamond encapsulation and packaging for long term implant stability.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>26476599</pmid><doi>10.1016/j.bios.2015.10.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2016-03, Vol.77, p.589-597
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1786194404
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Biocompatibility
Coated Materials, Biocompatible - chemical synthesis
Density
Diamond - chemistry
Diamonds
Electric Power Supplies
Energy harvesting
Energy Transfer
Equipment Design
Equipment Failure Analysis
Illumination
Materials Testing
Photovoltaic cells
Photovoltaics
Prostheses and Implants
Solar cells
Solar Energy
Surgical implants
Transdermal power delivery
Wavelengths
title Diamond encapsulated photovoltaics for transdermal power delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond%20encapsulated%20photovoltaics%20for%20transdermal%20power%20delivery&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Ahnood,%20A.&rft.date=2016-03-15&rft.volume=77&rft.spage=589&rft.epage=597&rft.pages=589-597&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2015.10.022&rft_dat=%3Cproquest_cross%3E1746871089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746871089&rft_id=info:pmid/26476599&rft_els_id=S0956566315304863&rfr_iscdi=true