A local energy-preserving scheme for Klein-Gordon-Schrodinger equations

A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-05, Vol.24 (5), p.171-176
1. Verfasser: 蔡加祥 汪佳玲 王雨顺
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A local energy conservation law is proposed for the Klein--Gordon-Schrrdinger equations, which is held in any local time-space region. The local property is independent of the boundary condition and more essential than the global energy conservation law. To develop a numerical method preserving the intrinsic properties as much as possible, we propose a local energy-preserving (LEP) scheme for the equations. The merit of the proposed scheme is that the local energy conservation law can hold exactly in any time-space region. With the periodic boundary conditions, the scheme also possesses the discrete change and global energy conservation laws. A nonlinear analysis shows that the LEP scheme converges to the exact solutions with order O(τ2 + h2). The theoretical properties are verified by numerical experiments.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/5/050205