(Ti,Al)N–Ni nanostructured coatings: Thermal stability, heat resistance, electrochemical behavior, and adhesive strength with a substrate
In this work, thermal stability and oxidation resistance at temperatures up to 800°C are studied for (Ti,Al)N–(8–10 at %)Ni coatings with a thickness on the order of 4 µm and a crystallite size below 20 nm, which have been prepared via ion–plasma vacuum arc deposition. The composition and structural...
Gespeichert in:
Veröffentlicht in: | Protection of metals and physical chemistry of surfaces 2016, Vol.52 (1), p.81-88 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, thermal stability and oxidation resistance at temperatures up to 800°C are studied for (Ti,Al)N–(8–10 at %)Ni coatings with a thickness on the order of 4 µm and a crystallite size below 20 nm, which have been prepared via ion–plasma vacuum arc deposition. The composition and structural characteristics of coatings remain stable during 1-h heating in vacuum of 10
–4
Pa at temperatures of 600 and 700°C. Heating at a temperature of 800°C leads to an increase in the crystallite size and a decrease in microstrains of a ceramic phase, which is accompanied by a reduction in the hardness of the coating from 51–53 to 31–33 GPa. The coatings are heat resistant up to 800°C and characterized by cohesive failure in scribing. The adhesive strength of coatings with a substrate exceeds 85 N. Studying electrochemical behavior reveals the high efficiency of (Ti,Al)N
0.87
–Ni coatings in corrosion protection of cutting tools in acid and alkaline environments. |
---|---|
ISSN: | 2070-2051 2070-206X |
DOI: | 10.1134/S2070205116010056 |