Oxygen-Initiated Stereoselective Thermal Isomerisation of a Cyclobutane Derivative in the Solid State

Solid‐state [2+2] photochemical cycloaddition reactions have been extensively studied after the classical work of Schmidt in the 1960s. Of these, trans‐1,2‐bis(4′‐pyridyl)ethylene (bpe) is one of the well‐studied alkenes to synthesize tetrakis(4‐pyridyl)cyclobutane (tpcb). However, almost all the so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2014-11, Vol.20 (48), p.15702-15708
Hauptverfasser: Chanthapally, Anjana, Yang, Hui, Quah, Hong Sheng, Webster, Richard D., Schreyer, Martin K., Wong, Ming Wah, Vittal, Jagadese J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid‐state [2+2] photochemical cycloaddition reactions have been extensively studied after the classical work of Schmidt in the 1960s. Of these, trans‐1,2‐bis(4′‐pyridyl)ethylene (bpe) is one of the well‐studied alkenes to synthesize tetrakis(4‐pyridyl)cyclobutane (tpcb). However, almost all the solid‐state [2+2] cycloaddition reactions of bpe yielded, almost exclusively, one of the four possible isomers, namely, the rctt‐tpcb (r=regio c=cis and t=trans). Here we describe a stereoselective synthesis of the tetrahedrally disposed rtct‐tpcb by the solid‐state thermal isomerization of the rctt‐isomer in atmospheric air. We propose that this isomerization occurs through a topochemical unimolecular mechanism by a radical chain pathway, initiated by molecular oxygen. This is supported by the nature of products formed in air and nitrogen, detection of a radical in ESR spectral studies, ESI‐MS crossover experiments, VT PXRD studies along with QM, MD and docking calculations. The formation of a unique isomer by thermal isomerization may be a general phenomenon to quantitatively synthesize other useful stereoisomers from the existing isomers of cyclobutane derivatives. Crystal engineering: Theoretical studies, supported by the nature of products formed and ESR spectral studies, reveal how crystal packing drives thermal isomerisation of a cyclobutane derivative stereoselectively by oxygen through a radical pathway. This isomerisation appears to be controlled by the relative orientations of the cyclobutane rings in the solid dictated by the supramolecular interactions (see figure).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201405228