Designing Molecular Printboards: A Photolithographic Platform for Recodable Surfaces

A light induced strategy for the design of β‐cyclodextrin (CD) based supramolecular devices is introduced, presenting a novel tool to fabricate multifunctional biointerfaces. Precision photolithography of a modified β‐CD was established on a light sensitive tetrazole surface immobilized on a bioinsp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2015-09, Vol.21 (38), p.13186-13190
Hauptverfasser: Abt, Doris, Schmidt, Bernhard V. K. J., Pop-Georgievski, Ognen, Quick, Alexander S., Danilov, Denis, Kostina, Nina Yu, Bruns, Michael, Wenzel, Wolfgang, Wegener, Martin, Rodriguez-Emmenegger, Cesar, Barner-Kowollik, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A light induced strategy for the design of β‐cyclodextrin (CD) based supramolecular devices is introduced, presenting a novel tool to fabricate multifunctional biointerfaces. Precision photolithography of a modified β‐CD was established on a light sensitive tetrazole surface immobilized on a bioinspired polydopamine (PDA) anchor layer via various shadow masks, as well as via direct laser writing (DLW), in order to craft any desired printboard design. Interfacial molecular recognition provided by light generated cavitate domains was demonstrated via spatially resolved encoding, erasing, and recoding of distinct supramolecular guest patterns. Thus, the light directed shaping of receptor monolayers introduces a powerful path to control supramolecular assemblies on various surfaces. Shining light on the printboard: Photolithography of β‐cyclodextrin host modules established on a polydopamine anchor layer was carried out to allow encoding, erasing, and recoding of supramolecular guest patterns on surfaces in a spatially resolved fashion.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201501707