Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media

We propose a novel strategy to integrate the nanoimprint lithography (NIL) technique with directed self-assembly (DSA) of block copolymer (BCP) for providing a robust, high-yield, and low-defect-density path to sub-20 nm dense patterning. Through this new NIL-DSA method, UV nanoimprint resist is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-10, Vol.25 (39), p.395301-395301
Hauptverfasser: Yang, XiaoMin, Xiao, Shuaigang, Hu, Wei, Hwu, Justin, van de Veerdonk, René, Wago, Koichi, Lee, Kim, Kuo, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel strategy to integrate the nanoimprint lithography (NIL) technique with directed self-assembly (DSA) of block copolymer (BCP) for providing a robust, high-yield, and low-defect-density path to sub-20 nm dense patterning. Through this new NIL-DSA method, UV nanoimprint resist is used as the DSA copolymer pre-pattern to expedite the DSA process. This method was successfully used to fabricate a 1.0 Td in−2 servo-integrated nanoimprint template for bit-patterned media (BPM) application. The fabricated template was used for UV-cure NIL on a 2.5-inch disk. The imprint resist patterns were further transferred into the underlying CoCrPt magnetic layer through a carbon hard mask using ion beam etching. The successful integration of the NIL technique with the DSA process provides us with a new route to BPM nanofabrication, which includes the following three major advantages: (1) a simpler and faster way to implement DSA for high-density BPM patterning; (2) a novel method for fabricating a high-quality dot pattern template through an iterative imprint-DSA-template procedure; and (3) an uncomplicated integration scheme for implementing non-periodic servo features with BCP patterns, thus accelerating the transition of moving the DSA technique from laboratory research to the BPM manufacturing environment.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/25/39/395301