Electric-Field-Driven Resistive Switching in the Dissipative Hubbard Model

We study how strongly correlated electrons on a dissipative lattice evolve out of equilibrium under a constant electric field, focusing on the extent of the linear regime and hysteretic nonlinear effects at higher fields. We access the nonequilibrium steady states, nonperturbatively in both the fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-06, Vol.114 (22), p.226403-226403, Article 226403
Hauptverfasser: Li, Jiajun, Aron, Camille, Kotliar, Gabriel, Han, Jong E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study how strongly correlated electrons on a dissipative lattice evolve out of equilibrium under a constant electric field, focusing on the extent of the linear regime and hysteretic nonlinear effects at higher fields. We access the nonequilibrium steady states, nonperturbatively in both the field and the electronic interactions, by means of a nonequilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime, limited by Joule heating, breaks down at fields much smaller than the quasiparticle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. We predict a nonmonotonic upper switching field due to an interplay of particle renormalization and the field-driven temperature. Hysteretic I-V curves suggest that the nonequilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.114.226403