Magnetoresistance in two-component systems

Two-component systems with equal concentrations of electrons and holes exhibit nonsaturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality due to recombination. The phenomenon originates in the excess qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-04, Vol.114 (15), p.156601-156601, Article 156601
Hauptverfasser: Alekseev, P S, Dmitriev, A P, Gornyi, I V, Kachorovskii, V Yu, Narozhny, B N, Schütt, M, Titov, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-component systems with equal concentrations of electrons and holes exhibit nonsaturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality due to recombination. The phenomenon originates in the excess quasiparticle density developing near the edges of the sample due to the compensated Hall effect. The size of the boundary region is of the order of the electron-hole recombination length that is inversely proportional to the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates over the bulk leading to linear magnetoresistance. Our results are relevant for two-and three-dimensional semimetals and narrow band semiconductors including most of the topological insulators.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.114.156601