Maximally nonlocal theories cannot be maximally random

Correlations that violate a Bell inequality are said to be nonlocal; i.e., they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serves to quantify the amount of randomness present in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-04, Vol.114 (16), p.160502-160502, Article 160502
Hauptverfasser: de la Torre, Gonzalo, Hoban, Matty J, Dhara, Chirag, Prettico, Giuseppe, Acín, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Correlations that violate a Bell inequality are said to be nonlocal; i.e., they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serves to quantify the amount of randomness present in observed correlations. In this work we reverse this research program and ask what do the randomness certification capabilities of a theory tell us about the nonlocality of that theory. We find that, contrary to initial intuition, maximal randomness certification cannot occur in maximally nonlocal theories. We go on and show that quantum theory, in contrast, permits certification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum theory is optimal for randomness; i.e., is it the most nonlocal theory that allows maximal randomness certification? We answer this question in the negative by identifying a larger-than-quantum set of correlations capable of this feat. Not only are these results relevant to understanding quantum mechanics' fundamental features, but also put fundamental restrictions on device-independent protocols based on the no-signaling principle.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.114.160502