The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2
We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2015-01, Vol.573, p.A45 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/201424937 |