Stochastic approximation of dynamical exponent at quantum critical point

We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-09, Vol.92 (10), Article 104411
Hauptverfasser: Yasuda, Shinya, Suwa, Hidemaro, Todo, Synge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S=1/2 quantum XY model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z=1, i.e., the three-dimensional classical XY universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition.
ISSN:1098-0121
2469-9950
1550-235X
2469-9969
DOI:10.1103/PhysRevB.92.104411