Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot

Simultaneous effect of hydrostatic pressure and polaronic mass on the binding energies of the ground and excited states of an on-center hydrogenic impurity confined in a GaAs/GaA1As spherical quantum dot are theoretically investigated by the variational method within the effective mass approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-11, Vol.24 (11), p.92-97
Hauptverfasser: Rejo Jeice, A., Gerardin Jayam, Sr, Joseph Wilson, K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simultaneous effect of hydrostatic pressure and polaronic mass on the binding energies of the ground and excited states of an on-center hydrogenic impurity confined in a GaAs/GaA1As spherical quantum dot are theoretically investigated by the variational method within the effective mass approximation. The binding energy is calculated as a function of dot radius and pressure. Our findings proved that the hydrostatic pressure led to the decrease of confined energy and the increase of donor binding energy. Conduction band non-parabolicity and the polaron masses are effective in the donor binding energy which is significant for narrow dots not in the confined energy. The maximum donor binding energy achieved by the polaronic mass in the ground and excited states are 2%-19% for the narrow dots. The confined and donor binding energies approach zero as the dot size approaches infinity.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/11/110303