Identifying local and quasilocal conserved quantities in integrable systems

We outline a procedure for counting and identifying a complete set of local and quasilocal conserved operators in integrable lattice systems. The method yields a systematic generation of all independent, conserved quasilocal operators related to the time average of local operators with a support on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-04, Vol.114 (14), p.140601-140601, Article 140601
Hauptverfasser: Mierzejewski, Marcin, Prelovšek, Peter, Prosen, Tomaž
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We outline a procedure for counting and identifying a complete set of local and quasilocal conserved operators in integrable lattice systems. The method yields a systematic generation of all independent, conserved quasilocal operators related to the time average of local operators with a support on up to M consecutive sites. As an example, we study the anisotropic Heisenberg spin-1/2 chain and show that the number of independent conserved operators grows linearly with M. In addition to the known local operators, there exist novel quasilocal conserved quantities in all the parity sectors. The existence of quasilocal conserved operators is shown also for the isotropic Heisenberg model. Implications for the anomalous relaxation of quenched systems are discussed as well.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.114.140601