Low specific contact resistance on epitaxial p-type 4H-SiC with a step-bunching surface
This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2015-11, Vol.24 (11), p.452-459 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing. |
---|---|
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/11/117304 |