Enantio- and Diastereoselective Formal Hetero-Diels-Alder Reactions of Trifluoromethylated Enones Catalyzed by Chiral Primary Amines

Enantioselective formal hetero‐Diels‐Alder reactions of trifluoromethylated enones and 2‐amino‐1,3‐butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran‐4‐ones are formed in up to 94 % yield and with up to 94 % ee. The re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2015-08, Vol.21 (33), p.11773-11778
Hauptverfasser: Lin, Yong-Jun, Du, Li-Na, Kang, Tai-Ran, Liu, Quan-Zhong, Chen, Ze-Qin, He, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enantioselective formal hetero‐Diels‐Alder reactions of trifluoromethylated enones and 2‐amino‐1,3‐butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran‐4‐ones are formed in up to 94 % yield and with up to 94 % ee. The reaction was carried out through a stepwise mechanism, including initial aminocatalytic aldol condensation of 2‐amino‐1,3‐butadiene to the trifluoromethylated carbonyl group followed by an intramolecular oxa‐Michael addition. Both NMR investigation and theoretical calculations on the transition state indicate that the protonated tertiary amine could effectively activate the carbonyl group of the trifluoromethyl ketone to promote the addition process through hydrogen‐bonding interaction of NH⋅⋅⋅F and NH⋅⋅⋅O simultaneously, and thus provide a chiral environment for the approach of amino‐1,3‐butadienes to the activated trifluoromethyl ketone, resulting in high enantioselectivity. The right environment: Enantioselective formal hetero‐Diels–Alder reactions of trifluoromethylated enones and 2‐amino‐1,3‐butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported (see scheme).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201501897