A new approach to estimate fugitive methane emissions from coal mining in China

Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2016-02, Vol.543 (Pt A), p.514-523
Hauptverfasser: Ju, Yiwen, Sun, Yue, Sa, Zhanyou, Pan, Jienan, Wang, Jilin, Hou, Quanlin, Li, Qingguang, Yan, Zhifeng, Liu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing a more accurate greenhouse gas (GHG) emissions inventory draws too much attention. Because of its resource endowment and technical status, China has made coal-related GHG emissions a big part of its inventory. Lacking a stoichiometric carbon conversion coefficient and influenced by geological conditions and mining technologies, previous efforts to estimate fugitive methane emissions from coal mining in China has led to disagreeing results. This paper proposes a new calculation methodology to determine fugitive methane emissions from coal mining based on the domestic analysis of gas geology, gas emission features, and the merits and demerits of existing estimation methods. This new approach involves four main parameters: in-situ original gas content, gas remaining post-desorption, raw coal production, and mining influence coefficient. The case studies in Huaibei–Huainan Coalfield and Jincheng Coalfield show that the new method obtains the smallest error, +9.59% and 7.01% respectively compared with other methods, Tier 1 and Tier 2 (with two samples) in this study, which resulted in +140.34%, +138.90%, and −18.67%, in Huaibei–Huainan Coalfield, while +64.36%, +47.07%, and −14.91% in Jincheng Coalfield. Compared with the predominantly used methods, this new one possesses the characteristics of not only being a comparably more simple process and lower uncertainty than the “emission factor method” (IPCC recommended Tier 1 and Tier 2), but also having easier data accessibility, similar uncertainty, and additional post-mining emissions compared to the “absolute gas emission method” (IPCC recommended Tier 3). Therefore, methane emissions dissipated from most of the producing coal mines worldwide could be more accurately and more easily estimated. [Display omitted] •Propose a new method to estimate fugitive methane emissions from coal mining.•New method has accurate prediction for CMM emissions without activity data updating.•Mining influence coefficient involved in new method is determined in range 1.3–1.9.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2015.11.024