Polyaniline Nanotube-ZnO Composite Materials: Facile Synthesis and Application

Polyaniline nanotubes and PANI-ZnO nanocomposites were prepared by the simplified Template-Free method. The experimental results indicated that the average diameter of Polyaniline nanotubes was approximately 150-200 nm. The average crystallite size of ZnO in PANI-ZnO composites was 27 nm. Moreover,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Wuhan University of Technology. Materials science edition 2015-12, Vol.30 (6), p.1147-1151
Hauptverfasser: Gao, Fang, Cheng, Yang, An, Liang, Tan, Ruiqin, Li, Xiaomin, Wang, Guanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyaniline nanotubes and PANI-ZnO nanocomposites were prepared by the simplified Template-Free method. The experimental results indicated that the average diameter of Polyaniline nanotubes was approximately 150-200 nm. The average crystallite size of ZnO in PANI-ZnO composites was 27 nm. Moreover, the as-prepared samples were characterized by scanning electron microscopy(SEM), FT-IR spectroscopy(FTIR) and X-ray diffraction(XRD). Photocatalytic properties of the obtained samples were investigated by the photodegradation analysis of orange II and methylene orange dye. The as-prepared PANIZnO nanocomposites exhibited much higher photocatalytic activity than pure PANI nanotubes. During 2 h photocatalytic courses under UV irradiation, the degradation ratios of Orange II and methyl orange using PANIZnO nanocomposites were 90.3% and 84.5%, respectively. Furthermore, this method can be extended to prepare other organic-inorganic semiconductor composites based composite catalysts.
ISSN:1000-2413
1993-0437
DOI:10.1007/s11595-015-1286-3