Six alternative proteases for mass spectrometry–based proteomics beyond trypsin

The use of a single enzyme such as trypsin for shotgun proteomics limits the ability to cover the whole proteome and all protein post-translational modifications. This protocol describes the use of six alternative proteases that complement trypsin to increase the coverage of the proteome. Protein di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2016-05, Vol.11 (5), p.993-1006
Hauptverfasser: Giansanti, Piero, Tsiatsiani, Liana, Low, Teck Yew, Heck, Albert J R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of a single enzyme such as trypsin for shotgun proteomics limits the ability to cover the whole proteome and all protein post-translational modifications. This protocol describes the use of six alternative proteases that complement trypsin to increase the coverage of the proteome. Protein digestion using a dedicated protease represents a key element in a typical mass spectrometry (MS)-based shotgun proteomics experiment. Up to now, digestion has been predominantly performed with trypsin, mainly because of its high specificity, widespread availability and ease of use. Lately, it has become apparent that the sole use of trypsin in bottom-up proteomics may impose certain limits in our ability to grasp the full proteome, missing out particular sites of post-translational modifications, protein segments or even subsets of proteins. To overcome this problem, the proteomics community has begun to explore alternative proteases to complement trypsin. However, protocols, as well as expected results generated from these alternative proteases, have not been systematically documented. Therefore, here we provide an optimized protocol for six alternative proteases that have already shown promise in their applicability in proteomics, namely chymotrypsin, LysC, LysN, AspN, GluC and ArgC. This protocol is formulated to promote ease of use and robustness, which enable parallel digestion with each of the six tested proteases. We present data on protease availability and usage including recommendations for reagent preparation. We additionally describe the appropriate MS data analysis methods and the anticipated results in the case of the analysis of a single protein (BSA) and a more complex cellular lysate ( Escherichia coli ). The digestion protocol presented here is convenient and robust and can be completed in ∼2 d.
ISSN:1754-2189
1750-2799
DOI:10.1038/nprot.2016.057