A numerical method to optimise the spatial dose distribution in carbon ion radiotherapy planning

The authors describe a numerical algorithm to optimise the entrance spectra of a composition of pristine carbon ion beams which delivers a pre-assumed dose-depth profile over a given depth range within the spread-out Bragg peak. The physical beam transport model is based on tabularised data generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2015-09, Vol.166 (1-4), p.351-355
Hauptverfasser: Grzanka, L, Korcyl, M, Olko, P, Waligorski, M P R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors describe a numerical algorithm to optimise the entrance spectra of a composition of pristine carbon ion beams which delivers a pre-assumed dose-depth profile over a given depth range within the spread-out Bragg peak. The physical beam transport model is based on tabularised data generated using the SHIELD-HIT10A Monte-Carlo code. Depth-dose profile optimisation is achieved by minimising the deviation from the pre-assumed profile evaluated on a regular grid of points over a given depth range. This multi-dimensional minimisation problem is solved using the L-BFGS-B algorithm, with parallel processing support. Another multi-dimensional interpolation algorithm is used to calculate at given beam depths the cumulative energy-fluence spectra for primary and secondary ions in the optimised beam composition. Knowledge of such energy-fluence spectra for each ion is required by the mixed-field calculation of Katz's cellular Track Structure Theory (TST) that predicts the resulting depth-survival profile. The optimisation algorithm and the TST mixed-field calculation are essential tools in the development of a one-dimensional kernel of a carbon ion therapy planning system. All codes used in the work are generally accessible within the libamtrack open source platform.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncv195