Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles

Most swarmers (swimming cells) of the stramenopile group, ranging from unicellular protist to giant kelps (brown algae), have two heterogeneous flagella: a long anterior flagellum (AF) and a relatively shorter posterior flagellum (PF). These flagellated cells often exhibit phototaxis upon light stim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 2016-05, Vol.253 (3), p.929-941
Hauptverfasser: Fu, Gang, Chikako Nagasato, Takahiro Yamagishi, Hiroshi Kawai, Kazuo Okuda, Yoshitake Takao, Takeo Horiguchi, Taizo Motomura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most swarmers (swimming cells) of the stramenopile group, ranging from unicellular protist to giant kelps (brown algae), have two heterogeneous flagella: a long anterior flagellum (AF) and a relatively shorter posterior flagellum (PF). These flagellated cells often exhibit phototaxis upon light stimulation, although the mechanism by which how the phototactic response is regulated remains largely unknown. A flavoprotein concentrating at the paraflagellar body (PFB) on the basal part of the PF, which can emit green autofluorescence under blue light irradiance, has been proposed as a possible blue light photoreceptor for brown algal phototaxis although the nature of the flavoprotein still remains elusive. Recently, we identified helmchrome as a PF-specific flavoprotein protein in a LC-MS/MS-based proteomics study of brown algal flagella (Fu et al. 2014). To verify the conservation of helmchrome, in the present study, the absence or presence and the localization of helmchrome in swarmers of various algal species were investigated. The results showed that helmchrome was only detected in phototactic swarmers but not the non-phototactic ones of the stramenopile group. Electron microscopy further revealed that the helmchrome detectable swarmers bear a conserved PFB-eyespot complex, which may serve as structural basis for light sensing. It is speculated that all three conserved properties: helmchrome, the PFB structure, and the eyespot apparatus, will be essential parts for phototaxis of stramenopile swarmers.
ISSN:0033-183X
1615-6102
DOI:10.1007/s00709-015-0857-7