Does tropical forest fragmentation affect plant anti-herbivore defensive and nutritional traits?
Leaf traits of tropical tree species are known to operate as intrinsic determinants of insect herbivory. However, we know little about how habitat fragmentation affects these traits and what, if any, are the consequences of this process on herbivory. We tested the effects of forest fragmentation on...
Gespeichert in:
Veröffentlicht in: | Journal of tropical ecology 2016-03, Vol.32 (2), p.162-164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leaf traits of tropical tree species are known to operate as intrinsic determinants of insect herbivory. However, we know little about how habitat fragmentation affects these traits and what, if any, are the consequences of this process on herbivory. We tested the effects of forest fragmentation on the leaf traits of sapling of four light-demanding species: Acalypha diversifolia, Hampea nutricia, Myriocarpa longipes, Siparuna thecaphora, and two shade-tolerant species: Pseudolmedia glabrata and Garcinia intermedia, in Los Tuxtlas, Mexico. We also conducted an acceptability assay with a generalist herbivore Spodoptera frugiperda. Plant traits did not change with forest fragmentation, but did with plant regeneration mode and species identity. Light-demanding species had significantly higher water content, nitrogen concentration and specific leaf area than shade-tolerant species. The latter had significantly higher leaf strength, carbon concentration and carbon:nitrogen ratio. Acceptability was affected by fragmentation but only in P. glabrata; plant tissue from forest fragments was consumed 2.6 times more than that from continuous forest. We conclude that forest fragmentation did not affect leaf traits in this site. |
---|---|
ISSN: | 0266-4674 1469-7831 |
DOI: | 10.1017/S0266467416000031 |