Use of genetic testing to identify sudden cardiac death syndromes
Abstract Sudden cardiac death (SCD) is a leading cause of mortality worldwide. Although coronary artery disease remains the most common substrate for SCD, primary cardiac genetic diseases, presenting with or without structural heart abnormalities, play a significant role. In the last 30 years, the s...
Gespeichert in:
Veröffentlicht in: | Trends in cardiovascular medicine 2015-11, Vol.25 (8), p.738-748 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Sudden cardiac death (SCD) is a leading cause of mortality worldwide. Although coronary artery disease remains the most common substrate for SCD, primary cardiac genetic diseases, presenting with or without structural heart abnormalities, play a significant role. In the last 30 years, the study of large family pedigrees allowed the discovery of causative genes unveiling the genetic basis of diseases such as primary cardiomyopathies and arrhythmia syndromes, which are known to increase the risk of SCD. However, recent technological advancement with the ability to perform massive parallel sequencing and analyze the entire genome has uncovered a higher level of complexity in the genetic predisposition for cardiac diseases, which are usually characterized by Mendelian inheritance patterns. Clinical genetic testing, historically shaped around a monogenic Mendelian disorder paradigm, is now facing the challenge to adopt and adapt to a more complex model in which a significant portion of subjects may present with multi-allelic inheritance involving additional genes that could modulate the severity and type of disease-related phenotypes. Here, we will try to provide a viewpoint that will hopefully foster further debate in the field. |
---|---|
ISSN: | 1050-1738 1873-2615 |
DOI: | 10.1016/j.tcm.2015.03.007 |