The Metabolism and Imaging in Live Cells of the Bovine Prion Protein in Its Native Form or Carrying Single Amino Acid Substitutions
Prion diseases are probably caused by an abnormal form of a cellular glycoprotein, the prion protein. Recent evidence suggests that the prion strain causing BSE has been transmitted to humans, thereby provoking a variant form of Creutzfeldt–Jacob disease. In this work, we analyzed the behavior of no...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2001-03, Vol.17 (3), p.521-538 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prion diseases are probably caused by an abnormal form of a cellular glycoprotein, the prion protein. Recent evidence suggests that the prion strain causing BSE has been transmitted to humans, thereby provoking a variant form of Creutzfeldt–Jacob disease. In this work, we analyzed the behavior of normal and malformed isoforms of the bovine PrP in transfected mammalian cell lines. Biochemical and immunocytochemical assays were complimented with imaging of live cells expressing fusion constructs between PrP and GFP. Bovine homologues of human E200K and D178N (129M) mutations were used as models of pathogenic isoforms. We show that the GFP does not impair the metabolism of native and mutant bPrPs and is thus a valid marker of PrP cellular distribution. We also show that each amino acid replacement provokes alterations in the cell sorting and processing of bPrP. These are different from those ascribed to both murine mutant homologues. However, human and bovine PrPs carrying the D178N genotype had similar cellular behavior. |
---|---|
ISSN: | 1044-7431 1095-9327 |
DOI: | 10.1006/mcne.2000.0953 |