High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes

Nrf2, which belongs to the basic leucine zipper (bZip) transcription factor family, has been implicated as a key molecule involved in antioxidant-responsive element (ARE)-mediated gene expression. In order to examine the role of Nrf2 in protection against xenobiotic toxicity, the sensitivity of nrf2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2001, Vol.59 (1), p.169-177
Hauptverfasser: ENOMOTO, Akiko, ITOH, Ken, NAGAYOSHI, Eiko, HARUTA, Junko, KIMURA, Toyoe, O'CONNOR, Tania, HARADA, Takanori, YAMAMOTO, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nrf2, which belongs to the basic leucine zipper (bZip) transcription factor family, has been implicated as a key molecule involved in antioxidant-responsive element (ARE)-mediated gene expression. In order to examine the role of Nrf2 in protection against xenobiotic toxicity, the sensitivity of nrf2 knockout mice to acetaminophen (N-acetyl-4-aminophenol (APAP)) was analyzed. The saturation of detoxification pathways after high levels of exposure to APAP is known to induce hepatotoxicity. Two factors important in its detoxification are UDP-glucuronosyltransferase (UDP-GT), an ARE-regulated phase-II drug-metabolizing enzyme, and glutathione (GSH), an antioxidant molecule whose synthesis depends on ARE-regulated gamma-glutamylcysteine synthetase (gammaGCS). Two- to 4-month-old male mice were orally administered a single dose of APAP at 0, 150, 300, or 600 mg/kg. Doses of 300 mg/kg APAP or greater caused death in the homozygous knockout mice only, and those that survived showed a greater severity in hepatic damage than the wild-type mice, as demonstrated by increased plasma alanine aminotransferase activity, decreased hepatic non-protein sulfhydryl (NPSH) content, and centrilobular hepatocellular necrosis. The high sensitivity of Nrf2-deficient mice was confirmed from observations made at 0, 2, 8, and 24 h after dosing with 300 mg/kg APAP; increased anti-APAP immunoreactivity was also noted in their livers at 2 h. Untreated homozygous knockout mice showed both a lower UDP-GT activity and NPSH content, which corresponded to decreased mRNA levels of UDP-GT (Ugt1a6) and the heavy chain of gammaGCS, respectively. These results show that Nrf2 plays a protective role against APAP hepatotoxicity by regulating both drug metabolizing enzymes and antioxidant genes through the ARE.
ISSN:1096-6080
1096-0929
1096-0929
DOI:10.1093/toxsci/59.1.169