Anti-metastatic gene therapy utilizing subcutaneous inoculation of EC-SOD gene transduced autologous fibroblast suppressed lung metastasis of Meth-A cells and 3LL cells in mice

We have previously reported that superoxide stimulates the motility of tumor cells and the administration of Cu-Zn superoxide dismutase (SOD) significantly suppresses metastasis. However, ideally, anti-metastatic therapy should be long-lasting, systemically effective and have low toxicity. The half-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2001, Vol.8 (2), p.149-156
Hauptverfasser: TANAKA, M, KOGAWA, K, NAKAMURA, K, NISHIHORI, Y, KURIBAYASHI, K, HAGIWARA, S, MURAMATSU, H, SAKAMAKI, S, NIITSU, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously reported that superoxide stimulates the motility of tumor cells and the administration of Cu-Zn superoxide dismutase (SOD) significantly suppresses metastasis. However, ideally, anti-metastatic therapy should be long-lasting, systemically effective and have low toxicity. The half-life of Cu-Zn SOD in plasma is so short that it cannot provide long-lasting effects. Therefore, in this study we have developed a gene therapy in a mouse model utilizing extracellular SOD (EC-SOD), which is the most prevalent SOD isoenzyme in extracellular fluids. We retrovirally transfected fibroblasts (syngeneic) with the EC-SOD gene and established EC-SOD-secreting fibroblasts. Inoculation of EC-SOD-secreting fibroblasts suppressed both artificial and spontaneous metastatic lung nodules in mouse metastasis models. These data indicate the feasibility of anti-metastatic gene therapy utilizing the EC-SOD gene.
ISSN:0969-7128
1476-5462
DOI:10.1038/sj.gt.3301362