The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity
Mutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used for large, multi-site, and/or time series studies, for bioassay-directed fractionation studies, for identifying the...
Gespeichert in:
Veröffentlicht in: | Mutation research 2004-11, Vol.567 (2), p.347-399 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used for large, multi-site, and/or time series studies, for bioassay-directed fractionation studies, for identifying the presence of specific classes of mutagens, and for doing site- or source-comparisons for relative levels of airborne mutagens. Early research recognized that although carcinogenic PAHs were present in air samples they could not account for the majority of the mutagenic activity detected. The mutagenicity of airborne particulate organics is due to at least 500 identified compounds from varying chemical classes. Bioassay-directed fractionation studies for identifying toxicants are difficult to compare because they do not identify all of the mutagens present, and both the analytical and bioassay protocols vary from study to study. However, these studies show that the majority of mutagenicity is usually associated with moderately polar/highly polar classes of compounds that tend to contain nitroaromatic compounds, aromatic amines, and aromatic ketones. Smog chamber studies have shown that mutagenic aliphatic and aromatic nitrogen-containing compounds are produced in the atmosphere when organic compounds (even non-mutagenic compounds) are exposed to nitrogen oxides and sunlight. Reactions that occur in the atmosphere, therefore, can have a profound effect on the genotoxic burden of ambient air. This review illustrates that the mutagenesis protocol and tester strains should be selected based on the design and purpose of the study and that the correlation with animal cancer bioassay results depends upon chemical class. Future emphasis needs to be placed on volatile and semi-volatile genotoxicants, and on multi-national studies that identify, quantify, and apportion mutagenicity. Initial efforts at replacing the Salmonella assay for ambient air studies with some emerging technology should be initiated. |
---|---|
ISSN: | 1383-5742 0027-5107 1388-2139 |
DOI: | 10.1016/j.mrrev.2004.08.002 |