Novel Metal Artifact Reduction Techniques with Use of Slice-Encoding Metal Artifact Correction and View-Angle Tilting MR Imaging for Improved Visualization of Brain Tissue near Intracranial Aneurysm Clips

Purpose The MR image quality after intracranial aneurysm clipping is often impaired because of artifacts induced by metal implants. The purpose of the present study was to evaluate the benefit of a new WARP sequence with slice-encoding metal artifact correction (SEMAC) and view-angle tilting (VAT) M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neuroradiology (Munich) 2016-03, Vol.26 (1), p.31-37
Hauptverfasser: Friedrich, B., Wostrack, M., Ringel, F., Ryang, Y. -M., Förschler, A., Waldt, S., Zimmer, C., Nittka, M., Preibisch, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The MR image quality after intracranial aneurysm clipping is often impaired because of artifacts induced by metal implants. The purpose of the present study was to evaluate the benefit of a new WARP sequence with slice-encoding metal artifact correction (SEMAC) and view-angle tilting (VAT) MR imaging as novel artifact reduction techniques. Materials and Methods A new WARP TSE (a work-in-progress software package provided by Siemens Healthcare) sequence was implemented for cranial applications based on a turbo spin echo (TSE) sequence. T1- and T2-weighted images with standard and WARP TSE sequences were acquired from 6 patients with 11 clipping sites, and the images were compared based on artifact size and general image quality. Results T2- and T1-weighted WARP TSE sequences resulted in a highly significant reduction of metal artifacts compared with standard sequences (T2w- WARP TSE: 89.8 ± 1.4 %; T1w- WARP TSE: 84.9 ± 2.9 %; p  
ISSN:1869-1439
1869-1447
DOI:10.1007/s00062-014-0324-4