A Significant but Constrained Geometry Pt→Al Interaction: Fixation of CO2 and CS2, Activation of H2 and PhCONH2
Reaction of the geminal PAl ligand [Mes2PC(CHPh)AltBu2] (1) with [Pt(PPh3)2(ethylene)] affords the T-shape Pt complex [(1)Pt(PPh3)] (2). X-ray diffraction analysis and DFT calculations reveal the presence of a significant Pt→Al interaction in 2, despite the strain associated with the four-memb...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-04, Vol.138 (14), p.4917-4926 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reaction of the geminal PAl ligand [Mes2PC(CHPh)AltBu2] (1) with [Pt(PPh3)2(ethylene)] affords the T-shape Pt complex [(1)Pt(PPh3)] (2). X-ray diffraction analysis and DFT calculations reveal the presence of a significant Pt→Al interaction in 2, despite the strain associated with the four-membered cyclic structure. The Pt···Al distance is short [2.561(1) Å], the Al center is in a pyramidal environment [Σ(C–Al–C) = 346.6°], and the PCAl framework is strongly bent (98.3°). Release of the ring strain and formation of X→Al interactions (X = O, S, H) impart rich reactivity. Complex 2 reacts with CO2 to give the T-shape adduct 3 stabilized by an O→Al interaction, which is a rare example of a CO2 adduct of a group 10 metal and actually the first with η1-CO2 coordination. Reaction of 2 with CS2 affords the crystalline complex 4, in which the PPtP framework is bent, the CS2 molecule is η2-coordinated to Pt, and one S atom interacts with Al. The Pt complex 2 also smoothly reacts with H2 and benzamide PhCONH2 via oxidative addition of H–H and H–N bonds, respectively. The ensuing complexes 5 and 7 are stabilized by Pt–H→Al and Pt–NH–C(Ph) = O→Al bridging interactions, resulting in 5- and 7-membered metallacycles, respectively. DFT calculations have been performed in parallel with the experimental work. In particular, the mechanism of reaction of 2 with H2 has been thoroughly analyzed, and the role of the Lewis acid moiety has been delineated. These results generalize the concept of constrained geometry TM→LA interactions and demonstrate the ability of Al-based ambiphilic ligands to participate in TM/LA cooperative reactivity. They extend the scope of small molecule substrates prone to such cooperative activation and contribute to improve our knowledge of the underlying factors. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.6b01320 |