Reconstitution of Fusion Proteins in Supported Lipid Bilayers for the Study of Cell Surface Receptor–Ligand Interactions in Cell–Cell Contact

Bioactive molecules such as adhesion ligands, growth factors, or enzymes play an important role in modulating cell behavior such as cell adhesion, spreading, and differentiation. Deciphering the mechanism of ligand-mediated cell adhesion and associated signaling is of great interest not only for fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2016-04, Vol.32 (14), p.3462-3469
Hauptverfasser: Ghosh Moulick, R, Afanasenkau, D, Choi, S.-E, Albers, J, Lange, W, Maybeck, V, Utesch, T, Offenhäusser, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioactive molecules such as adhesion ligands, growth factors, or enzymes play an important role in modulating cell behavior such as cell adhesion, spreading, and differentiation. Deciphering the mechanism of ligand-mediated cell adhesion and associated signaling is of great interest not only for fundamental biophysical investigations but also for applications in medicine and biotechnology. In the presented work, we developed a new biomimetic platform that enables culturing primary neurons and testing cell surface–receptor ligand interactions in cell–cell contacts as, e.g., in neuronal synapses. This platform consists of a supported lipid bilayer modified with incorporated neuronal adhesion proteins conjugated with the Fc-domain of IgG (ephrin A5 Fc-chimera). We extensively characterized properties of these protein containing bilayers using fluorescence recovery after photobleaching (FRAP), quartz crystal microbalance with dissipation (QCM-D), and immunostaining. We conclude that the Fc-domain is the part responsible for the incorporation of the protein into the bilayer. The biomimetic platform prepared by this new approach was able to promote neuronal cell adhesion and maintain growth as well as facilitate neuronal maturation as shown by electrophysiological measurements. We believe that our approach can be extended to insert other proteins to create a general culture platform for neurons and other cell types.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.5b04644