The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase
A putative glutathione peroxidase gene (Swiss-Prot accession number Z 68200) of Plasmodium falciparum , the causative agent of tropical malaria, was expressed in Escherichia coli and purified to electrophoretic homogeneity. Like phospholipid hydroperoxide glutathione peroxidase of mammals, it proved...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-03, Vol.276 (10), p.7397-7403 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A putative glutathione peroxidase gene (Swiss-Prot accession number Z 68200) of Plasmodium falciparum , the causative agent of tropical malaria, was expressed in Escherichia coli and purified to electrophoretic homogeneity. Like phospholipid hydroperoxide glutathione peroxidase of mammals, it proved
to be monomeric. It was active with H 2 O 2 and organic hydroperoxides but, unlike phospholipid hydroperoxide glutathione peroxidase, not with phosphatidylcholine hydroperoxide.
With glutathione peroxidases it shares the ping-pong mechanism with infinite V
max and K
m when analyzed with GSH as substrate. As a homologue with selenocysteine replaced by cysteine, its reactions with hydroperoxides
and GSH are 3 orders of magnitude slower than those of the selenoperoxidases. Unexpectedly, the plasmodial enzyme proved to
react faster with thioredoxins than with GSH and most efficiently with thioredoxin of P. falciparum (Swiss-Prot accession number 202664). It is therefore reclassified as thioredoxin peroxidase. With plasmodial thioredoxin,
the enzyme also displays ping-pong kinetics, yet with a limiting K
m of 10 μ m and a k
1 â² of 0.55 s â
1 . The apparent k
1 â² for oxidation with cumene, t -butyl, and hydrogen peroxides are 2.0 Ã 10 4
m
â
1 s â
1 , 3.3 Ã 10 3 m
â
1 s â
1 , and 2.5 Ã 10 3 m
â
1 s â
1 , respectively. k
2 â² for reduction by autologous thioredoxin is 5.4 Ã 10 4 m
-1 s â
1 (21.2 m
â
1 s â
1 for GSH). The newly discovered enzymatic function of the plasmodial gene product suggests a reconsideration of its presumed
role in parasitic antioxidant defense. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M008631200 |