Performance evaluation of Zircaloy reflector for pressurized water reactors

Summary This paper presents detailed analyses of a pressurized water reactor with a new reflector design using zirconium metal. The optimization of the reflector design has been performed using a two‐dimensional fuel assembly reflector model. The three‐dimensional core calculation results with the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2016-02, Vol.40 (2), p.160-167
Hauptverfasser: Choe, Jiwon, Lee, Deokjung, Jung, Ji-Eun, Shin, Ho Cheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper presents detailed analyses of a pressurized water reactor with a new reflector design using zirconium metal. The optimization of the reflector design has been performed using a two‐dimensional fuel assembly reflector model. The three‐dimensional core calculation results with the optimized reflector were compared against those with the existing water reflector and iron reflector. The high scattering cross section of zirconium enhances neutron reflections from the reflector to the core, increasing the peripheral assembly powers. From the analysis based on the equilibrium core, it was noted that the cycle length can be extended, and the pin peaks can be decreased when using zirconium reflector. The analysis has been performed for the optimized power reactor 1000 core with combustion engineering type fuel assemblies using the CASMO‐4E/SIMULATE‐3 (Studsvik Scandpower, Inc., Waltham, MA, USA) code system and SERPENT (VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02150 Espoo, Finland) code, with ENDF/B‐VI data. Copyright © 2015 John Wiley & Sons, Ltd. This paper presents detailed analyses of a pressurized water reactor with a new reflector design using zirconium metal. The optimization of the reflector design has been performed using a two‐dimensional fuel assembly reflector model. The three‐dimensional core calculation results with the optimized reflector were compared against those with the existing water reflector and iron reflector. The analysis has been performed for the OPR‐1000 core with combustion engineering‐type fuel assemblies using the CASMO‐4E/SIMULATE‐3 code system and SERPENT code, with ENDF/B‐VI data.
ISSN:0363-907X
1099-114X
DOI:10.1002/er.3443