Relationships between nitrogen, acid-unhydrolyzable residue, and climate among tree foliar litters

Using literature data, we investigated coniferous and broadleaf litter from 58 tree species using a database encompassing concentrations of N and acid-unhydrolyzable residue (AUR) (gravimetric lignin) in newly shed litter, mean annual temperature, and mean annual precipitation. Our aims were to (i)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2013, Vol.43 (1), p.103-107
Hauptverfasser: BERG, Björn, CHUNJIANG LIU, LASKOWSKI, Ryszard, DAVEY, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using literature data, we investigated coniferous and broadleaf litter from 58 tree species using a database encompassing concentrations of N and acid-unhydrolyzable residue (AUR) (gravimetric lignin) in newly shed litter, mean annual temperature, and mean annual precipitation. Our aims were to (i) demonstrate any large-scale relationships between concentrations of N and AUR in foliar litter and (ii) determine differences in this respect among litter from Pinus and Quercus. To this end, we had collected foliar litter data for Asia and Europe, forming a climate gradient. Litter from broadleaf and coniferous trees differed significantly in concentrations of N (p < 0.0001, 9.64 versus 5.50 mg/g, respectively) and AUR (p < 0.0001, 219 versus 292 mg/g, respectively). There were highly significant positive linear relationships between concentrations of N and AUR for broadleaf (p < 0.0001) and coniferous litter (p < 0.0001). There were also significant positive relationships for AUR as a function of N concentration for the genera Pinus and Quercus but not within species. That for Scots pine (Pinus sylvestris L.) was negative and that for common oak (Quercus robur L.) not significant.
ISSN:0045-5067
1208-6037
DOI:10.1139/cjfr-2012-0385