Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation

It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2016-03, Vol.41 (3), p.523-533
Hauptverfasser: Jarrott, Bevyn, Williams, Spencer J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit ‘priming’ leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-015-1661-7