Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles

Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect science 2016-04, Vol.23 (2), p.245-252
Hauptverfasser: Yang, Guang, Zhang, You-Nan, Gurr, Geoff M., Vasseur, Liette, You, Min-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant volatiles have been demonstrated to play an important role in regulating the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous vegetable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans‐2‐hexenal, benzaldehyde, nonanal and cis‐3‐hexenol, and 10 μL/mL of trans‐2‐hexenal and benzaldehyde with the strongest response provoked by trans‐2‐hexenal at 100 μL/mL. In the Y‐tube olfactometer, C. plutellae, was significantly attracted by 1 μL/mL of trans‐2‐hexenal and benzaldehyde. β‐caryophyllene, cis‐3‐hexenol or trans‐2‐hexenal significantly attracted C. plutellae at 10 μL/mL, while nonanal, benzyl alcohol, cis‐3‐hexenol or benzyl cyanide at 100 μL/mL significantly attracted C. plutellae. Trans‐2‐hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various compounds with mixtures 3 (trans‐2‐hexenal, benzaldehyde, nonanal, cis‐3‐hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans‐2‐hexenal, benzaldehyde, benzyl alcohol, (R)‐(+)‐limonene, β‐ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol of P. xylostella.
ISSN:1672-9609
1744-7917
DOI:10.1111/1744-7917.12308