influence of stream discontinuity and life history strategy on mussel community structure: a case study from the Sabine River, Texas

The impoundment of running waters is a threat to freshwater mussels and has only been cursorily examined in Texas. To address this, we evaluate mussel assemblage structure in the Sabine River downstream of a flood control and hydropower reservoir. We use the serial discontinuity concept (SDC) and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2016-05, Vol.770 (1), p.173-191
Hauptverfasser: Randklev, Charles R, Ford, Neil, Wolverton, Steve, Kennedy, James H, Robertson, Clint, Mayes, Kevin, Ford, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impoundment of running waters is a threat to freshwater mussels and has only been cursorily examined in Texas. To address this, we evaluate mussel assemblage structure in the Sabine River downstream of a flood control and hydropower reservoir. We use the serial discontinuity concept (SDC) and the Life History Continuum model (LHCM) to explain relationships between stream position (i.e., downstream distance from either dam) and mussel species richness, catch-per-unit effort (CPUE), and life history strategy. Using 90th, 85th, and 80th quantile regression models, we observed that mussel species richness and abundance were reduced for stream segments located near Lake Tawakoni and Toledo Bend Reservoir and that these reductions decreased with distance from either reservoir. We also observed significant shifts in life history composition of mussel assemblages depending on stream position from either dam. Opportunistic strategists were more abundant in reaches located immediately downstream of Lake Tawakoni and Toledo Bend Reservoir whereas periodic and equilibrium strategists were most abundant in reaches located at intermediate distances from either reservoir. Findings from this study confirm the negative impact large impoundments have on downstream mussel populations and demonstrate the value of using the SDC and LHCM for evaluating mussel response to river impoundment.
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-015-2586-5