Increased Myeloid Cell Production and Lung Bacterial Clearance in Mice Exposed to Cigarette Smoke

Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most patients with COPD are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 2016-03, Vol.54 (3), p.424-435
Hauptverfasser: Basilico, Paola, Cremona, Tiziana P, Oevermann, Anna, Piersigilli, Alessandra, Benarafa, Charaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most patients with COPD are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or after smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared with air-exposed mice when infected 16 to 24 hours after exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to levels comparable to those of control mice, suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production before infection in mice exposed to cigarette smoke with mice never exposed or after smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and granulocyte-macrophage colony-stimulating factor in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using Serpinb1a-deficient mice with reduced neutrophil numbers and treatment with granulocyte colony-stimulating factor showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow.
ISSN:1044-1549
1535-4989
DOI:10.1165/rcmb.2015-0017OC