Protein structure determination by conformational space annealing using NMR geometric restraints

ABSTRACT We have carried out numerical experiments to investigate the applicability of the global optimization method of conformational space annealing (CSA) to the enhanced NMR protein structure determination over existing PDB structures. The NMR protein structure determination is driven by the opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2015-12, Vol.83 (12), p.2251-2262
Hauptverfasser: Joo, Keehyoung, Joung, InSuk, Lee, Jinhyuk, Lee, Jinwoo, Lee, Weontae, Brooks, Bernard, Lee, Sung Jong, Lee, Jooyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We have carried out numerical experiments to investigate the applicability of the global optimization method of conformational space annealing (CSA) to the enhanced NMR protein structure determination over existing PDB structures. The NMR protein structure determination is driven by the optimization of collective multiple restraints arising from experimental data and the basic stereochemical properties of a protein‐like molecule. By rigorous and straightforward application of CSA to the identical NMR experimental data used to generate existing PDB structures, we redetermined 56 recent PDB protein structures starting from fully randomized structures. The quality of CSA‐generated structures and existing PDB structures were assessed by multiobjective functions in terms of their consistencies with experimental data and the requirements of protein‐like stereochemistry. In 54 out of 56 cases, CSA‐generated structures were better than existing PDB structures in the Pareto‐dominant manner, while in the remaining two cases, it was a tie with mixed results. As a whole, all structural features tested improved in a statistically meaningful manner. The most improved feature was the Ramachandran favored portion of backbone torsion angles with about 8.6% improvement from 88.9% to 97.5% (P‐value
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.24941