Expression-based discovery of variation in the human glutathione S-transferase M3 promoter and functional analysis in a glioma cell line using allele-specific chromatin immunoprecipitation
Discovery and functional evaluation of biologically significant regulatory single nucleotide polymorphisms (SNP) in carcinogen metabolism genes is a difficult challenge because the phenotypic consequences may be both transient and subtle. We have used a gene expression screening approach to identify...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2005, Vol.65 (1), p.99-104 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discovery and functional evaluation of biologically significant regulatory single nucleotide polymorphisms (SNP) in carcinogen metabolism genes is a difficult challenge because the phenotypic consequences may be both transient and subtle. We have used a gene expression screening approach to identify a functional regulatory SNP in glutathione S-transferase M3 (GSTM3). Anttila et al. proposed that variation in GSTM3 expression was affected by exposure to cigarette smoke and inheritance of the GSTM1-null genotype. To investigate the mechanism of GSTM3 expression was affected by exposure to cigarette smoke and inheritance of the GSTM1-null genotype. To investigate the mechanism of GSTM3 expression variation, we measured GSTM3 expression in lymphoblast cells from a human Centre d'Etude du Polymorphisme Humain family and observed a low expression phenotype. Promoter sequencing revealed two novel GSTM3 promoter SNPs: A/C and A/G SNPs, 63 and 783 bp upstream of the codon 1 start site, respectively. In this pedigree, the two children homozygous for the -63C/C genotype had 8-fold lower GSTM3 expression relative to the two children with the -63A/A genotype, with no association between A-783G SNP and GSTM3 expression. Further evaluation using genotyped glioma cell lines and with luciferase reporter constructs showed that the -63C allele was associated with lower GSTM3 expression (P < 0.0001 and P < 0.003). RNA pol II chromatin immunoprecipitation was combined with quantitative probed-based allelic discrimination genotyping to provide direct evidence of a 9-fold reduced RNA pol II binding capacity for the -63C allele. These results show that the GSTM3 -63C allele strongly affects gene expression in human cell lines and suggests that individuals who carry the low expression allele may be deficient in glutathione transferase catalyzed biological functions. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.99.65.1 |