Design of Small Intramolecular Singlet Fission Chromophores: An Azaborine Candidate and General Small Size Effects

We report the first attempt to design small intramolecular singlet fission chromophores, with the aid of quantum chemistry and explicitly simulating the time evolution of state populations using quantum dynamics method. We start with three previously proposed azaborine-substituted intermolecular sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2016-04, Vol.7 (7), p.1351-1358
Hauptverfasser: Zeng, Tao, Goel, Prateek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the first attempt to design small intramolecular singlet fission chromophores, with the aid of quantum chemistry and explicitly simulating the time evolution of state populations using quantum dynamics method. We start with three previously proposed azaborine-substituted intermolecular singlet fission chromophores. Through analyzing their frontier orbital amplitudes, we select a BN-substituted azulene as the building block. Covalently connecting two such monomers and tuning their relative configuration, we examine three dimers. One dimer is found to be an eminent candidate: the triplet-pair state is quickly formed within 1 ps, and the two triplets are ready to be disentangled. We elucidate the general small size effects in intramolecular singlet fission and focus on specific aspects which should be taken care of when manipulating the fission rate through steric hindrance.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.6b00356