From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation
Heteroatom-doped porous carbons with ultrahigh microporosity were prepared from a nitrogen-rich azo-linked polymer (ALP-6) as a precursor for gas separation applications. Direct carbonization and chemical activation of ALP-6 with ZnCl2 and KOH were successfully applied to obtain three different clas...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-04, Vol.8 (13), p.8491-8501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heteroatom-doped porous carbons with ultrahigh microporosity were prepared from a nitrogen-rich azo-linked polymer (ALP-6) as a precursor for gas separation applications. Direct carbonization and chemical activation of ALP-6 with ZnCl2 and KOH were successfully applied to obtain three different classes of porous carbons (ALPDCs). Synthetic processes were conducted at relatively mild temperatures (500–800 °C),which resulted in retention of appreciable levels of nitrogen content (4.7–14.3 wt %). Additionally, oxygen functionalities were found to be present in chemically activated samples. The resultant porous carbons feature a diverse range of textural properties with a predominant microporous nature in common. The highest CO2 uptake value of 5.2 mmol g–1 at 1 bar and 298 K in ALPDCK600 was originated from well-developed porosity and basic heteroatoms (N and O) on the pore walls. The highest heteroatom doping level (12 wt % nitrogen and 20 wt % oxygen) coupled with the high level of microporosity (84%) for ALPDCK500 led to notable CO2/N2 (62) and CO2/CH4 (11) selectivity values and a high CO2 uptake capacity (1.5 mmol g–1, at 0.15 bar) at 298 K. This study illustrates the effective use of a single-source precursor with robust nitrogen bonds in combination with diverse carbonization methods to tailor the chemical and textural properties of heteroatom-doped porous carbons for CO2 capture and separation applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b00567 |