Expression profile of long non-coding RNAs in colorectal cancer: A microarray analysis
Colorectal cancer (CRC) is one of the most prevalent malignant tumors and the second cause of cancer-related mortality worldwide. Due to increased morbidity and mortality rates, there is an urgent need to understand the pathogenesis of CRC, discover strategies that can improve diagnosis, and ultimat...
Gespeichert in:
Veröffentlicht in: | Oncology reports 2016-04, Vol.35 (4), p.2035-2044 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Colorectal cancer (CRC) is one of the most prevalent malignant tumors and the second cause of cancer-related mortality worldwide. Due to increased morbidity and mortality rates, there is an urgent need to understand the pathogenesis of CRC, discover strategies that can improve diagnosis, and ultimately identify therapies targeting this disease. Over the past several years, research into tumor progression mechanisms has been devoted to identifying and understanding various coding and non-coding regions of the genome and how these genetic variants may affect tumorigenesis and progression. Recently, long non-coding RNAs (lncRNAs), which are non-protein coding transcripts longer than 200 nucleotides, have emerged as a key aspect in tumor pathogenesis. In the present study, we examined the lncRNA and mRNA expression profiles in 4 patients with colon adenocarcinoma, with paired adjacent normal tissues as controls. Microarray data showed that a total of 3,523 lncRNAs and 2,515 mRNAs were consistently differentially expressed in the CRC tissues compared to adjacent normal tissues. Upon comparison of the differentially expressed transcripts between the groups, we identified 22 pathways which were related to the upregulated transcripts and 24 pathways that corresponded to the down-regulated transcripts. Gene ontology analysis revealed that the upregulated transcripts were predominantly enriched in DNA metabolic processes, and the downregulated transcripts were predominantly enriched in organic hydroxyl compound metabolic processes. Coding-non-coding gene co-expression analysis showed that these differentially expressed lncRNAs were closely correlated with 'Wnt signaling pathway' components, whose aberrant activation plays a central role in CRC, indicating that a functional correlation exists between them. In conclusion, the results of the microarray and informatic analysis strongly suggest that lncRNA dysregulation is involved in the complicated process of CRC development, and may represent a novel class of diagnostic markers or therapeutic targets for CRC. |
---|---|
ISSN: | 1021-335X 1791-2431 |
DOI: | 10.3892/or.2016.4606 |