A Flavin-Dependent Decarboxylase–Dehydrogenase–Monooxygenase Assembles the Warhead of α,β-Epoxyketone Proteasome Inhibitors

The α,β-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [13C-methyl]l-methionine implicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-04, Vol.138 (13), p.4342-4345
Hauptverfasser: Zabala, Daniel, Cartwright, Joshua W, Roberts, Douglas M, Law, Brian J. C, Song, Lijiang, Samborskyy, Markiyan, Leadlay, Peter F, Micklefield, Jason, Challis, Gregory L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The α,β-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [13C-methyl]l-methionine implicated an α-dimethyl-β-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-β-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,β-epoxyketone. This transformation appears to proceed via an unprecedented decarboxylation–dehydrogenation–monooxygenation cascade. The biosynthesis of the TMC-86A warhead is completed by cytochrome P450-mediated hydroxylation of the α-methyl-α,β-epoxyketone.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b01619