Keratinocyte Growth Factor-Mediated Pattern of Gene Expression in Breast Cancer Cells

Background: Breast cancer metastasis is associated with the motility and invasiveness of breast cancer cells. In a previous study we reported the motility enhancement effect of keratinocyte growth factor (KGF) on breast cancer cells. This study established and characterized the influence of KGF on b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer genomics & proteomics 2004-08, Vol.1 (4), p.339-344
Hauptverfasser: Zang, Xiao-Ping, Lerner, M L, Do, S V, Brackett, D J, Pento, J T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Breast cancer metastasis is associated with the motility and invasiveness of breast cancer cells. In a previous study we reported the motility enhancement effect of keratinocyte growth factor (KGF) on breast cancer cells. This study established and characterized the influence of KGF on breast cancer cell motility and determined that KGF-induced motility was observed only in estrogen receptor-positive breast cancer cells. The objective of the present study was to identify genes involved in the KGF motility response in human breast cancer cells. Materials and Methods: Using cDNA expression assays, we compared the expression of mRNA in control and KGF-treated MCF-7 breast cancer cells. Scatter plots and cluster analysis of gene expression were used to determine KGF-mediated gene expression patterns. Results: It was determined that over 100 genes were up- or down-regulated from 3-100 fold at 1h following KGF treatment. We identified up-regulated and down-regulated target genes that are associated with some aspect of tumor progression, proliferation or metastasis. Conclusion: Knowledge of specific genes and patterns of gene regulation associated with KGF-enhanced cell motility may provide important new information concerning the mechanisms involved in tumor metastasis. In addition, these genes and/or protein products may serve as novel therapeutic targets or biomarkers of metastatic progression. The pattern gene of expression observed in this study provides new information on the molecular signature associated with the motility and metastatic progression of breast cancer.
ISSN:1109-6535