Does plant growth phase determine the response of plants and soil organisms to defoliation?

To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2005-03, Vol.37 (3), p.433-443
Hauptverfasser: Ilmarinen, Katja, Mikola, Juha, Nieminen, Mervi, Vestberg, Mauritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To test a hypothesis that the effects of defoliation on plant ecophysiology and soil organisms depend on the timing of defoliation within a growing season, we established a greenhouse experiment using replicated grassland microcosms. Each microcosms was composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing in grassland soil with a diverse soil community. The experiment consisted of two treatment factors—defoliation and plant growth phase (PGP)—in a fully factorial design. Defoliation had two categories, i.e. no trimming or trimming a total of four times at 2 week intervals. The PGP treatment had four categories, i.e. 1, 3, 7 or 13 weeks growth following planting before the first defoliation (subsequently referred to as PGP1, PGP2, PGP3 and PGP4, respectively). In each PGP treatment category, microcosms were harvested 1 week after the final defoliation. Harvested shoot and root mass and total shoot production (including trimmed and harvested shoot mass) increased with time and were lower in defoliated than in non-defoliated systems. The fraction of root biomass of harvested plant biomass decreased with time but was increased by defoliation at PGP3 and PGP4. The proportion of T. repens in total shoot production increased and those of P. lanceolata and P. pratense decreased with time. Defoliation increased the proportions of P. lanceolata and P. pratense in total shoot production at PGP3 and PGP4. Root N and C concentrations increased and root C-to-N ratio decreased with time in non-defoliated systems. Defoliation increased root N concentration by 38 and 33% at PGP1 and PGP2, respectively, but decreased the concentration by 22% at PGP4. In contrast, defoliation reduced root C concentration on average by 1.5% at each PGP. As with the effects on root N concentration, defoliation decreased the root C-to-N ratio at PGP1 and PGP2 but increased the ratio at PGP4. Among soil animal trophic groups, the abundance of herbivorous nematodes was higher at PGP4 than at PGP1–3 and that of predacious nematodes higher at PGP2-4 than at PGP1, while the abundance of bacterivorous, fungivorous and omnivorous nematodes and that of detritivorous enchytraeids did not differ between the PGP categories. Among bacterivorous nematodes, however, Acrobeloides, Chiloplacus and Protorhabditis species decreased and that of Plectus spp. increased with time. Defoliation did not affect the abundance of soil animal trophic groups, but reduced the ab
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2004.07.034