Preparation of thermoplastic vulcanizates based on waste crosslinked polyethylene and ground tire rubber through dynamic vulcanization

An environmental‐friendly approach called high‐shear mechanical milling was developed to de‐crosslink ground tire rubber (GTR) and waste crosslinked polyethylene (XLPE). The realization of partial devulcanization of GTR and de‐crosslinking of XLPE were confirmed by gel fraction measurements. Fourier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-11, Vol.122 (3), p.2110-2120
Hauptverfasser: Zhang, Xinxing, Lu, Canhui, Liang, Mei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An environmental‐friendly approach called high‐shear mechanical milling was developed to de‐crosslink ground tire rubber (GTR) and waste crosslinked polyethylene (XLPE). The realization of partial devulcanization of GTR and de‐crosslinking of XLPE were confirmed by gel fraction measurements. Fourier transform infrared spectral studies revealed that a new peak at 1723.3 cm−1 corresponds to the carbonyl group (CO) absorption was appeared after milling. The rheological properties showed that the XLPE/GTR blends represent lower apparent viscosity after mechanical milling, which means that the milled blends are easy to process. Thermoplastic vulcanizates (TPVs) could be prepared with these partially de‐crosslinked XLPE/GTR composite powders through dynamic vulcanization. The mechanical properties of the XLPE/GTR composites increased with increasing cycles of milling. The raw XLPE/GTR blends could not be processed to a continuous sheet. After 20 cycles of milling, the tensile strength and elongation at break of XLPE/GTR (50/50) composites increased to 6.0 MPa and 185.3%, respectively. The tensile strength and elongation at break of the composites have been further improved to 9.1 MPa and 201.2% after dynamic vulcanization, respectively. Re‐processability study confirmed the good thermoplastic processability of the TPVs prepared. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
ISSN:0021-8995
1097-4628
1097-4628
DOI:10.1002/app.34293