Water wave propagation in unbounded domains. Part II: Numerical methods for fractional PDEs

This paper concerns numerical solutions for a fractional partial differential equation arising as a nonreflecting boundary condition in water wave propagation. The fractional derivative operator is written as divergence of a singular integrable convolution, which allows the equation to be viewed as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-10, Vol.275, p.443-458
Hauptverfasser: Jennings, G.I., Prigge, D., Carney, S., Karni, S., Rauch, J.B., Abgrall, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns numerical solutions for a fractional partial differential equation arising as a nonreflecting boundary condition in water wave propagation. The fractional derivative operator is written as divergence of a singular integrable convolution, which allows the equation to be viewed as a conservation law with a linear nonlocal flux. A semi-discrete finite volume scheme is presented, using conservative piecewise polynomial reconstruction of the solution. The convolution with the singular kernel is then integrated exactly. Time integration uses Runge–Kutta schemes of matching order. Stability is discussed, convergence is established and numerical examples are presented.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2014.07.007