Reactivity of Metal Catalysts in Glucose-Fructose Conversion
A joint experimental and computational study on the glucose–fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were onl...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2014-09, Vol.20 (38), p.12298-12309 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A joint experimental and computational study on the glucose–fructose conversion in water is reported. The reactivity of different metal catalysts (CrCl3, AlCl3, CuCl2, FeCl3, and MgCl2) was analyzed. Experimentally, CrCl3 and AlCl3 achieved the best glucose conversion rates, CuCl2 and FeCl3 were only mediocre catalysts, and MgCl2 was inactive. To explain these differences in reactivity, DFT calculations were performed for various metal complexes. The computed mechanism consists of two proton transfers and a hydrogen‐atom transfer; the latter was the rate‐determining step for all catalysts. The computational results were consistent with the experimental findings and rationalized the observed differences in the behavior of the metal catalysts. To be an efficient catalyst, a metal complex should satisfy the following criteria: moderate Brønsted and Lewis acidity (pKa=4–6), coordination with either water or weaker σ donors, energetically low‐lying unoccupied orbitals, compact transition‐state structures, and the ability for complexation of glucose. Thus, the reactivity of the metal catalysts in water is governed by many factors, not just the Lewis acidity.
The mechanism of glucose–fructose conversion was investigated for different transition‐metal catalysts in water (see scheme). The mechanism is influenced by the Lewis and Brønsted acidity of the metal catalysts, which are governed by their electronic structure for a given set of ligands. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201402437 |