H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters form a family of molecular motor proteins that couple ATP hydrolysis to substrate translocation across cell membranes. Each nucleotide binding domain of ABC-transporters contains a highly conserved H-loop histidine residue, whose preci...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2013-10, Vol.15 (38), p.15811-15815 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adenosine triphosphate (ATP)-binding cassette (ABC) transporters form a family of molecular motor proteins that couple ATP hydrolysis to substrate translocation across cell membranes. Each nucleotide binding domain of ABC-transporters contains a highly conserved H-loop histidine residue, whose precise mechanistic role in motor functions has remained elusive. By using combined quantum mechanical and molecular mechanical (QM/MM) calculations, we showed that the conserved H-loop residue H662 in E. coli HlyB, a bacterial ABC-transporter, can act first as a general acid and then as a general base to facilitate proton transfer in ATP hydrolysis. Without the assistance of H662, direct proton transfer from the lytic water to ATP results in a substantially higher barrier height. Our findings suggest that the essential function of the H-loop residue H662 is to provide a "chemical linchpin" that shuttles protons between reactants through a relay mechanism, thereby catalyzing ATP hydrolysis in HlyB. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c3cp50965f |